Abstract
The textual entailment problem is to determine if a given text entails a given hypothesis. This paper describes first a general generative probabilistic setting for textual entailment. We then focus on the sub-task of recognizing whether the lexical concepts present in the hypothesis are entailed from the text. This problem is recast as one of text categorization in which the classes are the vocabulary words. We make novel use of Naïve Bayes to model the problem in an entirely unsupervised fashion. Empirical tests suggest that the method is effective and compares favorably with state-of-theart heuristic scoring approaches.
Original language | English |
---|---|
Pages (from-to) | 1682-1683 |
Number of pages | 2 |
Journal | IJCAI International Joint Conference on Artificial Intelligence |
State | Published - 2005 |
Event | 19th International Joint Conference on Artificial Intelligence, IJCAI 2005 - Edinburgh, United Kingdom Duration: 30 Jul 2005 → 5 Aug 2005 |