Abstract
We recently showed that the ire-1/xbp-1 arm of the UPR plays a crucial role in maintaining basic endoplasmic reticulum (ER) functions required for the metabolism of secreted proteins even during unstressed growth conditions. During these studies we realized that although C. elegans is a powerful system to study the genetics of many cellular processes; it lacks effective tools for tracking the metabolism of secreted proteins at the cell and organism levels. Here, we outline how genetic manipulations and expression analysis of a DAF-28::GFP translational fusion transgene can be combined to infer different steps in the life cycle of secretory proteins. We demonstrate how we have used this tool to reveal folding defects, clearance defects, and secretion defects in ire-1 and xbp-1 mutants. We believe that further studies using this tool will deepen the understanding of secretory protein metabolism.
Original language | American English |
---|---|
Journal | Worm |
Volume | 3 |
Issue number | 1 |
State | Published - 2014 |