A multistage mathematical approach to automated clustering of high-dimensional noisy data

Alexander Friedman, Michael D. Keselman, Leif G. Gibb, Ann M. Graybiel

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


A critical problem faced in many scientific fields is the adequate separation of data derived from individual sources. Often, such datasets require analysis of multiple features in a highly multidimensional space, with overlap of features and sources. The datasets generated by simultaneous recording from hundreds of neurons emitting phasic action potentials have produced the challenge of separating the recorded signals into independent data subsets (clusters) corresponding to individual signal-generating neurons. Mathematical methods have been developed over the past three decades to achieve such spike clustering, but a complete solution with fully automated cluster identification has not been achieved. We propose here a fully automated mathematical approach that identifies clusters in multidimensional space through recursion, which combats the multidimensionality of the data. Recursion is paired with an approach to dimensional evaluation, in which each dimension of a dataset is examined for its informational importance for clustering. The dimensions offering greater informational importance are given added weight during recursive clustering. To combat strong background activity, our algorithm takes an iterative approach of data filtering according to a signal-to-noise ratio metric. The algorithm finds cluster cores, which are thereafter expanded to include complete clusters. This mathematical approach can be extended from its prototype context of spike sorting to other datasets that suffer from high dimensionality and background activity.

Original languageEnglish
Pages (from-to)4477-4482
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number14
StatePublished - 7 Apr 2015
Externally publishedYes


  • Curse of dimensionality
  • Dimension reduction
  • Dimensional evaluation
  • Dimensional selection
  • Spike sorting


Dive into the research topics of 'A multistage mathematical approach to automated clustering of high-dimensional noisy data'. Together they form a unique fingerprint.

Cite this