Abstract
Two classical results by F. and M. Riesz on absolute continuity and by Hardy and Littlewood on the absolutely convergence of Fourier series for a function f with bounded variation, whose conjugate is also of bounded variation, are generalized. We improve earlier obtained one-dimensional non-periodic versions and present multidimensional extensions for Hardy’s variation.
Original language | English |
---|---|
Title of host publication | Applied and Numerical Harmonic Analysis |
Publisher | Springer International Publishing |
Pages | 227-240 |
Number of pages | 14 |
DOIs | |
State | Published - 2019 |
Publication series
Name | Applied and Numerical Harmonic Analysis |
---|---|
ISSN (Print) | 2296-5009 |
ISSN (Electronic) | 2296-5017 |
Bibliographical note
Publisher Copyright:© 2019, Springer Nature Switzerland AG.
Keywords
- Absolute continuity
- Bounded variation
- Brothers Riesz theorem
- Fourier transform
- Hardy space
- Hardy–Littlewood theorem
- Hardy’s variation
- Hilbert transform