Abstract
In this paper we address the problem of differentiating between malignant and benign tumors based on their appearance in the CC and MLO mammography views. Classification of clustered breast microcalcifications into benign and malignant categories is an extremely challenging task for computerized algorithms and expert radiologists alike. We describe a deep-learning classification method that is based on two view-level decisions, implemented by two neural networks, followed by a single-neuron layer that combines the viewlevel decisions into a global decision that mimics the biopsy results. Our method is evaluated on a large multi-view dataset extracted from the standardized digital database for screening mammography (DDSM). Experimental results show that our network structure significantly improves on previously suggested methods.
Original language | English |
---|---|
Title of host publication | 2016 IEEE International Symposium on Biomedical Imaging |
Subtitle of host publication | From Nano to Macro, ISBI 2016 - Proceedings |
Publisher | IEEE Computer Society |
Pages | 726-730 |
Number of pages | 5 |
ISBN (Electronic) | 9781479923502 |
DOIs | |
State | Published - 15 Jun 2016 |
Event | 2016 IEEE 13th International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2016 - Prague, Czech Republic Duration: 13 Apr 2016 → 16 Apr 2016 |
Publication series
Name | Proceedings - International Symposium on Biomedical Imaging |
---|---|
Volume | 2016-June |
ISSN (Print) | 1945-7928 |
ISSN (Electronic) | 1945-8452 |
Conference
Conference | 2016 IEEE 13th International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2016 |
---|---|
Country/Territory | Czech Republic |
City | Prague |
Period | 13/04/16 → 16/04/16 |
Bibliographical note
Publisher Copyright:© 2016 IEEE.
Keywords
- Computer-aided diagnosis (CADx)
- Mammography
- Microcalcifications
- deep-learning
- multi-view analysis