A game-theoretic approach for reliability evaluation of public transportation transfers with stochastic features

Giorgio Gnecco, Yuval Hadas, Marcello Sanguineti

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

A game-theoretic approach based on the framework of transferable-utility cooperative games is developed to assess the reliability of transfer nodes in public transportation networks in the case of stochastic transfer times. A cooperative game is defined, whose model takes into account the public transportation system, the travel times, the transfers and the associated stochastic transfer times, and the users’ demand. The transfer stops are modeled as the players of such a game, and the Shapley value – a solution concept in cooperative game theory – is used to identify their centrality and relative importance. Theoretical properties of the model are analyzed. A two-level Monte Carlo approximation of the vector of Shapley values associated with the nodes is introduced, which is efficient and able to take into account the stochastic features of the transportation network. The performance of the algorithm is investigated, together with that of its distributed computing variation. The usefulness of the proposed approach for planners and policy makers is shown with a simple example and on a case study from the public transportation network of Auckland, New Zealand.

Original languageEnglish
Article number100090
JournalEURO Journal on Transportation and Logistics
Volume11
DOIs
StatePublished - Jan 2022

Bibliographical note

Publisher Copyright:
© 2022 The Authors

Keywords

  • Analysis of transfers
  • Network reliability
  • Public transportation systems
  • Stochastic transfer times
  • Transferable utility games

Fingerprint

Dive into the research topics of 'A game-theoretic approach for reliability evaluation of public transportation transfers with stochastic features'. Together they form a unique fingerprint.

Cite this