A framework for inter-camera association of multi-target trajectories by invariant target models

Shahar Daliyot, Nathan S. Netanyahu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations


We propose a novel framework for associating multi-target trajectories across multiple non-overlapping views (cameras) by constructing an invariant model per each observed target. Ideally, these models represent the targets in a unique manner. The models are constructed by generating synthetic images that simulate how targets would be seen from different viewpoints. Our framework does not require any training or other supervised phases. Also, we do not make use of spatiotemporal coordinates of trajectories, i.e., our framework seamlessly works with both overlapping and non-overlapping field-of-views (FOVs) as well as widely separated ones. Also, contrary to many other related works, we do not try to estimate the relationship between cameras that tends to be error prone in environments like airports or supermarkets where targets wander about different areas, stop at times, or turn back to their starting location. We show the results obtained by our framework on a rather challenging dataset. Also, we propose a black-box approach based on Support Vector Machine (SVM) for fusing multiple pertinent algorithms and demonstrate the added value of our framework with respect to some basic techniques.

Original languageEnglish
Title of host publicationComputer Vision - ACCV 2012 International Workshops, Revised Selected Papers
Number of pages15
EditionPART 2
StatePublished - 2013
Event11th Asian Conference on Computer Vision, ACCV 2012 - Daejeon, Korea, Republic of
Duration: 5 Nov 20126 Nov 2012

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NumberPART 2
Volume7729 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349


Conference11th Asian Conference on Computer Vision, ACCV 2012
Country/TerritoryKorea, Republic of


Dive into the research topics of 'A framework for inter-camera association of multi-target trajectories by invariant target models'. Together they form a unique fingerprint.

Cite this