TY - JOUR
T1 - A framework for discrete integral transformations I - The pseudopolar Fourier transform
AU - Averbuch, A.
AU - Coifman, R. R.
AU - Donoho, D. L.
AU - Israeli, M.
AU - Shkolnisky, Y.
PY - 2007
Y1 - 2007
N2 - The Fourier transform of a continuous function, evaluated at frequencies expressed in polar coordinates, is an important conceptual tool for understanding physical continuum phenomena. An analogous tool, suitable for computations on discrete grids, could be very useful; however, no exact analogue exists in the discrete case. In this paper we present the notion of pseudopolar grid (pp grid) and the pseudopolar Fourier transform (ppFT), which evaluates the discrete Fourier transform at points of the pp grid. The pp grid is a type of concentric-squares grid in which the radial density of squares is twice as high as usual. The pp grid consists of equally spaced samples along rays, where different rays are equally spaced in slope rather than angle. We develop a fast algorithm for the ppFT, with the same complexity order as the Cartesian fast Fourier transform; the algorithm is stable, invertible, requires only one-dimensional operations, and uses no approximate interpolations. We prove that the ppFT is invertible and develop two algorithms for its inversion: iterative and direct, both with complexity O(n2 log n), where n × n is the size of the reconstructed image. The iterative algorithm applies conjugate gradients to the Gram operator of the ppFT. Since the transform is ill-conditioned, we introduce a preconditioner, which significantly accelerates the convergence. The direct inversion algorithm utilizes the special frequency domain structure of the transform in two steps. First, it resamples the pp grid to a Cartesian frequency grid and then recovers the image from the Cartesian frequency grid.
AB - The Fourier transform of a continuous function, evaluated at frequencies expressed in polar coordinates, is an important conceptual tool for understanding physical continuum phenomena. An analogous tool, suitable for computations on discrete grids, could be very useful; however, no exact analogue exists in the discrete case. In this paper we present the notion of pseudopolar grid (pp grid) and the pseudopolar Fourier transform (ppFT), which evaluates the discrete Fourier transform at points of the pp grid. The pp grid is a type of concentric-squares grid in which the radial density of squares is twice as high as usual. The pp grid consists of equally spaced samples along rays, where different rays are equally spaced in slope rather than angle. We develop a fast algorithm for the ppFT, with the same complexity order as the Cartesian fast Fourier transform; the algorithm is stable, invertible, requires only one-dimensional operations, and uses no approximate interpolations. We prove that the ppFT is invertible and develop two algorithms for its inversion: iterative and direct, both with complexity O(n2 log n), where n × n is the size of the reconstructed image. The iterative algorithm applies conjugate gradients to the Gram operator of the ppFT. Since the transform is ill-conditioned, we introduce a preconditioner, which significantly accelerates the convergence. The direct inversion algorithm utilizes the special frequency domain structure of the transform in two steps. First, it resamples the pp grid to a Cartesian frequency grid and then recovers the image from the Cartesian frequency grid.
KW - Concentric-squares grid
KW - Fractional Fourier transform
KW - Linogram
KW - Polar Fourier transform
KW - Pseudopolar Fourier transform
KW - Unequally spaced FFT
UR - http://www.scopus.com/inward/record.url?scp=44949095124&partnerID=8YFLogxK
U2 - 10.1137/060650283
DO - 10.1137/060650283
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:44949095124
SN - 1064-8275
VL - 30
SP - 764
EP - 784
JO - SIAM Journal on Scientific Computing
JF - SIAM Journal on Scientific Computing
IS - 2
ER -