A Flexible Organomagnetic Single-Layer Composite Film with Built-In Multistimuli Responsivity

Amos Bardea, Adam Cohen, Alexander Axelevitch, Fernando Patolsky

Research output: Contribution to journalArticlepeer-review

Abstract

Materials possessing multiple properties and functionalities, that can be controlled or modulated by external stimuli, are a central focus of current research in materials sciences due to their potential to significantly enhance various future technological applications. Herein, we report a significant advancement in this field through the development of a smart, multifunctional organomagnetic composite material. By utilizing a thin layer of polydimethylsiloxane (PDMS) and polypyrrole (PPy) precursors, doped with nickel nanoparticles (NiNPs), we have created an innovative organomagnetic, PDMS/PPy/NiNPs (PPN), single-layer composite film that displays multistimuli responsivity. The study presents the first demonstration of a multifunctional flexible, three-component film structure integrating the structural and flexible PDMS component, together with a conductive polymer component and metal-based nanoparticles into a single-layer design, which displays enhanced and unprecedented responsivity properties against multiple different stimuli. Unlike typical stacked multilayered structures, that exhibit one or two functionalities at most, this novel configuration exhibits multiple functionalities, including magnetoresistance, mechanical stress response, piezoresistivity, and temperature change sensitivity. The as-prepared film demonstrates notable magnetoresistance responsivity, with a relative electrical resistance, ΔR/R0, changing under a weak magnetic field and under ambient conditions. The significance of our study lies in the film’s versatility, stability, and sensitivity, especially within the physiological temperature range, making it highly relevant for future biomedical applications. Furthemore, the film’s sensitivity to mechanical deformation reveals an impressive piezoresistance behavior. Unlike existing multilayer architectures of higher complexity, our single-layer thin film offers a simpler, more flexible, and reliable solution with a broad range of stimuli-sensing capabilities. The significance of this novel multiresponsive composite material is underscored by the growing demand for advanced materials in biomedical devices, magnetic switches, sensors, electronic skin, transistors, and organic spintronic devices. These promising organomagnetic self-standing layers provide a robust platform for future technological innovations.

Original languageEnglish
Pages (from-to)60686-60698
Number of pages13
JournalACS Applied Materials and Interfaces
Volume16
Issue number44
DOIs
StatePublished - 6 Nov 2024
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2024 American Chemical Society.

Keywords

  • electronic skin
  • magnetoresistance
  • organic electronics
  • smart materials
  • stimuli-responsive materials

Fingerprint

Dive into the research topics of 'A Flexible Organomagnetic Single-Layer Composite Film with Built-In Multistimuli Responsivity'. Together they form a unique fingerprint.

Cite this