TY - JOUR
T1 - A Distal Enhancer in the Interferon-γ (IFN-γ) Locus Revealed by Genome Sequence Comparison
AU - Lee, Dong U.
AU - Avni, Orly
AU - Chen, Lin
AU - Rao, Anjana
PY - 2004/2/6
Y1 - 2004/2/6
N2 - Large-scale cross-species DNA sequence comparison has become a powerful tool to identify conserved cis-regulatory modules of genes. However, bioinformatic analysis alone cannot reveal how an evolutionarily conserved region regulates gene expression: whether it functions as an enhancer, silencer, or insulator; whether its function is cell-type restricted; and whether biologically relevant transcription factors bind to the element. Here we combine bioinformatics with wet-lab techniques to illustrate a general and systematic method of identifying functional conserved regulatory regions of genes. We applied this approach to the interferon-gamma (IFN-γ) gene. Comparison of human and mouse IFN-γ reveals a highly conserved non-coding sequence located ∼5 kb 5′ of the transcription start site. This region coincides with constitutive and inducible DNase I hypersensitivity sites present in IFN-γ-producing Th1 cells but not in Th2 cells that do not produce IFN-γ. Histone methylation at the 5′ conserved non-coding sequences indicates a more accessible chromatin structure in Th1 cells compared with Th2 cells. This element binds two transcription factors known to be essential for IFN-γ expression: nuclear factor of activated T cells, an inducible transcription factor, and T-box protein expressed in T cells, a cell lineage-restricted transcription factor. Together, these findings identify a highly conserved distal enhancer in the IFN-γ cytokine locus and validate our approach as a successful method to detect cis-regulatory elements.
AB - Large-scale cross-species DNA sequence comparison has become a powerful tool to identify conserved cis-regulatory modules of genes. However, bioinformatic analysis alone cannot reveal how an evolutionarily conserved region regulates gene expression: whether it functions as an enhancer, silencer, or insulator; whether its function is cell-type restricted; and whether biologically relevant transcription factors bind to the element. Here we combine bioinformatics with wet-lab techniques to illustrate a general and systematic method of identifying functional conserved regulatory regions of genes. We applied this approach to the interferon-gamma (IFN-γ) gene. Comparison of human and mouse IFN-γ reveals a highly conserved non-coding sequence located ∼5 kb 5′ of the transcription start site. This region coincides with constitutive and inducible DNase I hypersensitivity sites present in IFN-γ-producing Th1 cells but not in Th2 cells that do not produce IFN-γ. Histone methylation at the 5′ conserved non-coding sequences indicates a more accessible chromatin structure in Th1 cells compared with Th2 cells. This element binds two transcription factors known to be essential for IFN-γ expression: nuclear factor of activated T cells, an inducible transcription factor, and T-box protein expressed in T cells, a cell lineage-restricted transcription factor. Together, these findings identify a highly conserved distal enhancer in the IFN-γ cytokine locus and validate our approach as a successful method to detect cis-regulatory elements.
UR - http://www.scopus.com/inward/record.url?scp=1042278131&partnerID=8YFLogxK
U2 - 10.1074/jbc.M307904200
DO - 10.1074/jbc.M307904200
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 14607827
AN - SCOPUS:1042278131
SN - 0021-9258
VL - 279
SP - 4802
EP - 4810
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 6
ER -