TY - JOUR
T1 - A density functional study of possible intermediates of the reaction of dioxygen molecule with non-heme iron complexes. 1. N-side versus O-side mechanism with water-free model
AU - Torrent, Maricel
AU - Mogi, Koichi
AU - Basch, Harold
AU - Musaev, Djamaladdin G.
AU - Morokuma, Keiji
PY - 2001/9/13
Y1 - 2001/9/13
N2 - Mechanistic aspects of the biological activation of O2 catalyzed by methane monooxygenase (MMO) were investigated by using a hybrid density functional method. The reduced form of the metalloenzyme was modeled by cis-(H2O)(NH2)Fe(η2-HCOO)2Fe(NH 2)(H2O), where the O2 molecule may coordinate the Fe centers from two different sides, the H2O-side and the NH2-side, leading to two different mechanisms, O-side and N-side pathways, respectively. Calculations show that both pathways proceed via similar intermediates. The energy profile for the reaction of O2 coming from the O-side, however, is more consistent with available experimental data than for the N-side. On the other hand, the N-side mechanism is thermodynamically more favorable. This study suggests that, if the protein backbone did not block the N-side, the O2 molecule would most likely approach the dinuclear iron center from this side rather than from the O-side. Several mixed-valence intermediates have been found during the reaction, including an FeII-FeIII mixed-valence species, P*, prior to formation of intermediate P, and a species similar to intermediate X in the analogous mechanism of Ribonucleotide Reductase, as well as an FeIII-FeIV mixed-valence species prior to formation of intermediate Q. Our theoretical findings give support to the idea that electrons do not need to be transferred by pairs in the studied diiron system. This is the first time that a structure for intermediate P* has been proposed in the literature.
AB - Mechanistic aspects of the biological activation of O2 catalyzed by methane monooxygenase (MMO) were investigated by using a hybrid density functional method. The reduced form of the metalloenzyme was modeled by cis-(H2O)(NH2)Fe(η2-HCOO)2Fe(NH 2)(H2O), where the O2 molecule may coordinate the Fe centers from two different sides, the H2O-side and the NH2-side, leading to two different mechanisms, O-side and N-side pathways, respectively. Calculations show that both pathways proceed via similar intermediates. The energy profile for the reaction of O2 coming from the O-side, however, is more consistent with available experimental data than for the N-side. On the other hand, the N-side mechanism is thermodynamically more favorable. This study suggests that, if the protein backbone did not block the N-side, the O2 molecule would most likely approach the dinuclear iron center from this side rather than from the O-side. Several mixed-valence intermediates have been found during the reaction, including an FeII-FeIII mixed-valence species, P*, prior to formation of intermediate P, and a species similar to intermediate X in the analogous mechanism of Ribonucleotide Reductase, as well as an FeIII-FeIV mixed-valence species prior to formation of intermediate Q. Our theoretical findings give support to the idea that electrons do not need to be transferred by pairs in the studied diiron system. This is the first time that a structure for intermediate P* has been proposed in the literature.
UR - http://www.scopus.com/inward/record.url?scp=0035856073&partnerID=8YFLogxK
U2 - 10.1021/jp0114743
DO - 10.1021/jp0114743
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:0035856073
SN - 1089-5647
VL - 105
SP - 8616
EP - 8628
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
IS - 36
ER -