A Conformalized Learning of a Prediction Set with Applications to Medical Imaging Classification

Roy Hirsch, Jacob Goldberger

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Medical imaging classifiers can achieve high predictive accuracy, but quantifying their uncertainty remains an unresolved challenge, which prevents their deployment in medical clinics. We present an algorithm that can modify any classifier to produce a prediction set containing the true label with a user-specified probability, such as 90%. We train a network to predict an instance-based version of the Conformal Prediction threshold. The threshold is then conformalized to ensure the required coverage. We applied the proposed algorithm to several standard medical imaging classification datasets. The experimental results demonstrate that our method outperforms current approaches in terms of smaller average size of the prediction set while maintaining the desired coverage.

Original languageEnglish
Title of host publicationIEEE International Symposium on Biomedical Imaging, ISBI 2024 - Conference Proceedings
PublisherIEEE Computer Society
ISBN (Electronic)9798350313338
DOIs
StatePublished - 2024
Event21st IEEE International Symposium on Biomedical Imaging, ISBI 2024 - Athens, Greece
Duration: 27 May 202430 May 2024

Publication series

NameProceedings - International Symposium on Biomedical Imaging
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Conference

Conference21st IEEE International Symposium on Biomedical Imaging, ISBI 2024
Country/TerritoryGreece
CityAthens
Period27/05/2430/05/24

Bibliographical note

Publisher Copyright:
© 2024 IEEE.

Keywords

  • calibration
  • conformal prediction
  • interpretability
  • neural networks
  • prediction sets

Fingerprint

Dive into the research topics of 'A Conformalized Learning of a Prediction Set with Applications to Medical Imaging Classification'. Together they form a unique fingerprint.

Cite this