A Composite DNN Architecture for Speech Enhancement

Yochai Yemini, Shlomo E. Chazan, Jacob Goldberger, Sharon Gannot

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In speech enhancement, the use of supervised algorithms in the form of deep neural networks (DNNs) has become tremendously popular in recent years. The target function of the DNN (and the associated estimators) is often either a masking function applied to the noisy spectrum, or the clean log-spectrum. In this work, we show that both separate cost functions are unsuitable for dealing with narrowband noise, and propose a new composite estimator in the log-spectrum domain. The new technique relies on a single DNN that outputs both a masking function and an estimated log-spectrum. Both outputs are used for the composite enhancement. The proposed estimator demonstrates superior performance for speech utterances contaminated by additive narrowband noise, while maintaining the enhancement quality of the baseline algorithms for wideband noise.

Original languageEnglish
Title of host publication2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages841-845
Number of pages5
ISBN (Electronic)9781509066315
DOIs
StatePublished - May 2020
Event2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spain
Duration: 4 May 20208 May 2020

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2020-May
ISSN (Print)1520-6149

Conference

Conference2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
Country/TerritorySpain
CityBarcelona
Period4/05/208/05/20

Bibliographical note

Publisher Copyright:
© 2020 IEEE.

Keywords

  • Speech enhancement
  • deep neural network
  • narrowband noise
  • single microphone

Fingerprint

Dive into the research topics of 'A Composite DNN Architecture for Speech Enhancement'. Together they form a unique fingerprint.

Cite this