A comparative study of electrodes comprising nanometric and submicron particles of LiNi0.50Mn0.50O2, LiNi0.33Mn0.33Co0.33O2, and LiNi0.40Mn0.40Co0.20O2 layered compounds

Surendra K. Martha, Hadar Sclar, Zvi Szmuk Framowitz, Daniela Kovacheva, Nikolay Saliyski, Yosef Gofer, Pessia Sharon, Eran Golik, Boris Markovsky, Doron Aurbach

Research output: Contribution to journalArticlepeer-review

140 Scopus citations

Abstract

In this paper we compare the behavior of LiNi0.5Mn0.5O2, LiNi0.33Mn0.33Co0.33O2 (NMC) and LiNi0.4Mn0.4Co0.2O2 as cathode materials for advanced rechargeable Li-ion batteries. These materials were prepared by a self-combustion reaction (SCR) from the metal nitrates and sucrose, followed by calcination at elevated temperatures. The temperature and duration of calcination enabled the adjustment of the average particle size and size distribution. It was established that the annealing temperature (700-900 °C) of the as-prepared oxides influences strongly the crystallite and particle size, the morphology of the material, and the electrochemical performance of electrodes in Li-cells. Capacities up to 190, 180 and 170 mAh g-1 could be obtained with Li[NiMn]O2, LiNi0.4Mn0.4Co0.2O2 and LiNi0.33Mn0.33Co0.33O2, respectively. In terms of rate capability, the order of these electrodes is NMC < LiNi0.4Mn0.4Co0.2O2 ≪ Li[NiMn]O2. Many hundreds of cycles at full DOD could be obtained with Li[NiMn]O2 and NMC electrodes in Li-cells, at room temperature. All of these materials develop a unique surface chemistry that leads to their passivation and stabilization in standard electrolyte solutions (alkyl carbonates/LiPF6). The surface chemistry was studied by FTIR, XPS and Raman spectroscopy and is discussed herein.

Original languageEnglish
Pages (from-to)248-255
Number of pages8
JournalJournal of Power Sources
Volume189
Issue number1
DOIs
StatePublished - 1 Apr 2009

Keywords

  • Cycling behavior
  • Li-batteries
  • Lithiated Mn-Ni-Co oxides
  • Rate capabilities
  • Surface reactions

Fingerprint

Dive into the research topics of 'A comparative study of electrodes comprising nanometric and submicron particles of LiNi0.50Mn0.50O2, LiNi0.33Mn0.33Co0.33O2, and LiNi0.40Mn0.40Co0.20O2 layered compounds'. Together they form a unique fingerprint.

Cite this