A commutator description of the solvable radical of a finite group

N Gordeev, F Grunewald, B. Kunyavskii, E. Plotkin

Research output: Contribution to journalArticlepeer-review

Abstract

We are looking for the smallest integer k>1 providing the following characterization of the solvable radical R(G) of any finite group G: R(G) coincides with the collection of all g such that for any k elements a_1,a_2,...,a_k the subgroup generated by the elements g, a_iga_i^{-1}, i=1,...,k, is solvable. We consider a similar problem of finding the smallest integer l>1 with the property that R(G) coincides with the collection of all g such that for any l elements b_1,b_2,...,b_l the subgroup generated by the commutators [g,b_i], i=1,...,l, is solvable. Conjecturally, k=l=3. We prove that both k and l are at most 7. In particular, this means that a finite group G is solvable if and only if in each conjugacy class of G every 8 elements generate a solvable subgroup.
Original languageAmerican English
Pages (from-to)85-120
JournalJournal of the European Mathematical Society
Volume2
Issue number1
StatePublished - 2006

Fingerprint

Dive into the research topics of 'A commutator description of the solvable radical of a finite group'. Together they form a unique fingerprint.

Cite this