A 7T security oriented SRAM bitcell

Robert Giterman, Osnat Keren, Alexander Fish

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

Power analysis (PA) attacks have become a serious threat to security systems by enabling secret data extraction through the analysis of the current consumed by the power supply of the system. Embedded memories, often implemented with six-transistor static random access memory (SRAM) cells, serve as a key component in many of these systems. However, conventional SRAM cells are prone to side-channel PA attacks due to the correlation between their current characteristics and written data. To provide resiliency to these types of attacks, we propose a security-oriented 7T SRAM cell, which incorporates an additional transistor to the original 6T SRAM implementation and a two-phase write operation, which significantly reduces the correlation between the stored data and the power consumption during write operations. The proposed 7T SRAM cell was implemented in a 28 nm technology and demonstrates over 1000 × lower write energy standard deviation between write '1' and '0' operations compared to a conventional 6T SRAM. In addition, the proposed cell has a 39%-53% write energy reduction and a 19%-38% reduced write delay compared to other PA resistant SRAM cells.

Original languageEnglish
Article number8572791
Pages (from-to)1396-1400
Number of pages5
JournalIEEE Transactions on Circuits and Systems II: Express Briefs
Volume66
Issue number8
DOIs
StatePublished - Aug 2019

Bibliographical note

Publisher Copyright:
© 2018 IEEE.

Keywords

  • Static random access memory (SRAM)
  • differential power analysis (DPA)
  • side-channel attacks (SCA)

Fingerprint

Dive into the research topics of 'A 7T security oriented SRAM bitcell'. Together they form a unique fingerprint.

Cite this