О последовательности первых двоичных цифр дробных частей значений многочлена

Translated title of the contribution: On the sequence of the first binary digits of the fractional parts of the values of a polynomial

A. Ya Belov, G. V. Kondakov, I. V. Mitrofanov, M. M. Golafshan, Ivan Andreevich Reshetnikov

Research output: Contribution to journalArticlepeer-review

Abstract

Let P(n) be a polynomial, having an irrational coefficient of the highest degree. A word w (w = (wn), n ∈ N) consists of a sequence of first binary numbers of {P(n)} i.e. wn = [2{P(n)}]. Denote by T(k) the number of different subwords of w of length k . We’ll formulate the main result of this paper. Theorem. There exists a polynomial Q(k), depending only on the power of the polynomial P, such that T(k) = Q(k) for sufficiently great k.

Translated title of the contributionOn the sequence of the first binary digits of the fractional parts of the values of a polynomial
Original languageRussian
Pages (from-to)482-487
Number of pages6
JournalChebyshevskii Sbornik
Volume22
Issue number1
DOIs
StatePublished - 2021
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2021 State Lev Tolstoy Pedagogical University. All rights reserved.

Keywords

  • Combinatorics on words
  • Symbolical dynamics
  • Unipotent torus transformation
  • Weiyl lemma

Fingerprint

Dive into the research topics of 'On the sequence of the first binary digits of the fractional parts of the values of a polynomial'. Together they form a unique fingerprint.

Cite this